

Using affordances for assembly: Towards a complete Craft Assembly System

Vitor H. Isume¹, Kensuke Harada^{1,2}, Weiwei Wan^{1,2}, Yukiyasu Domae²

¹Graduate School of Engineering Science, Osaka University ²National Institute of Advanced Industrial Science and Technology (AIST)

ICCAS2021

Overview

- Introduction
- Related works
- Craft Assembly Task
- Method
- Results
- Experiment
- Conclusions

Introduction

- Do-it-yourself (DIY) products custom, homemade objects that are similar to commercially available objects
- How to perform this kind of task in a robotic system?

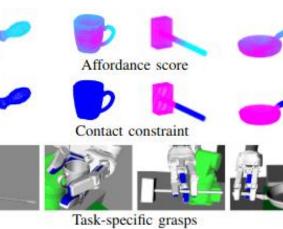
DIY projects taken from instructables.com

Related works

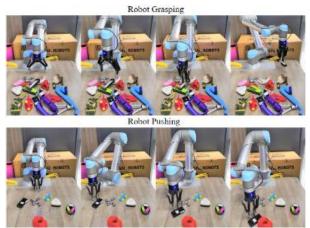
"The affordances of the environment are what it offers the animal, what it provides or furnishes, either for good or ill."

• Detecting affordances

Do, T.T., Nguyen, A. and Reid, I. – "AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection" (2018) Task-specific Grasping

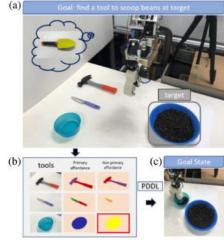


M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic – "Affordance detection for task-specific grasping using deep learning" (2017) Robotic manipulation

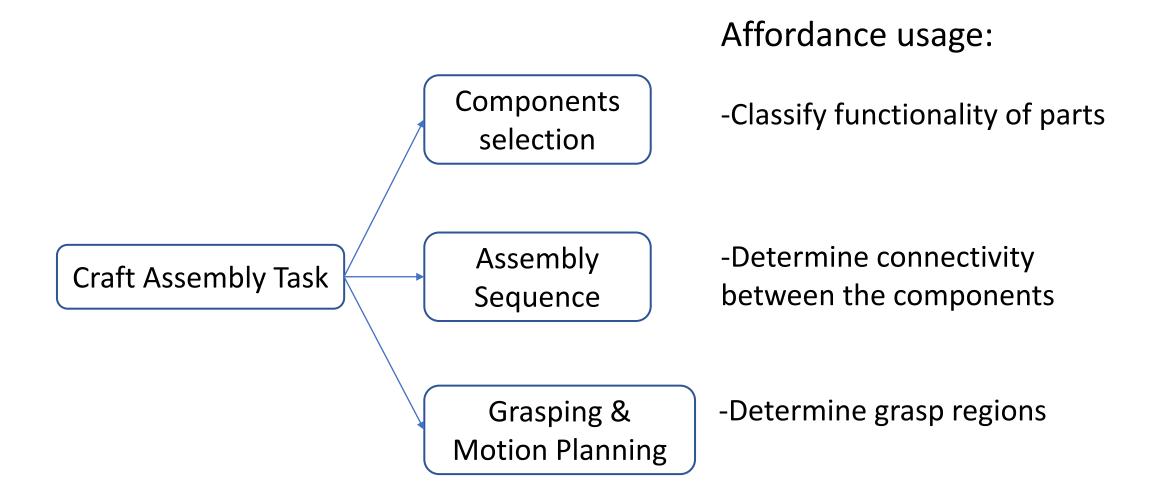


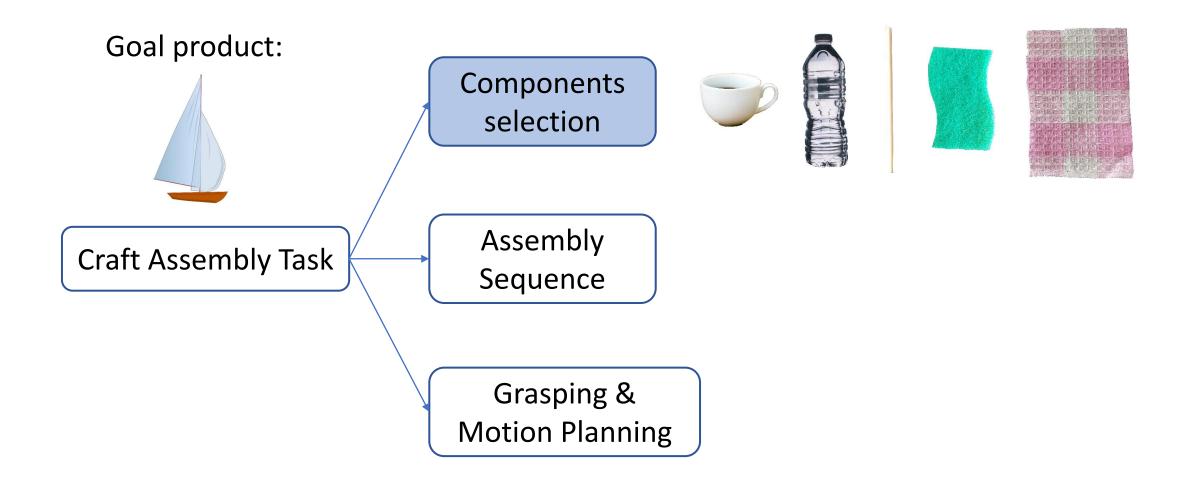
Wu, Z. Zhang, H. Cheng, K. Yang, J. Liu, and Z. Guo – "Learning affordance space in physical world for vision-based robotic object manipulation" (2020)

- James J. Gibson, 1979
 - Alternative solutions

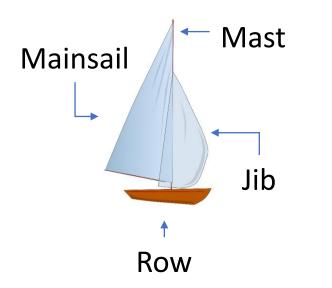


F- J. Chu, R. Xu, L. Seguin, and P. A. Vela – "Toward affordance detection and ranking on novel objects for real-world robotic manipulation" (2019)





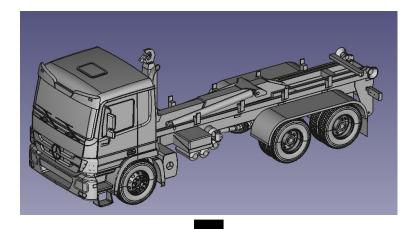
Components selection

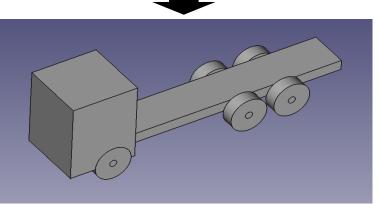


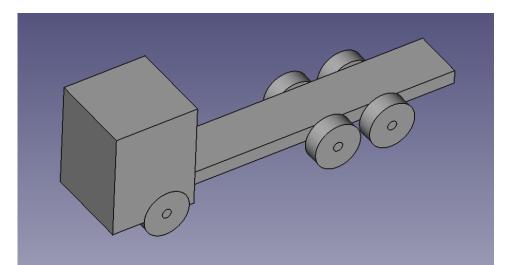
- How to select the components?
 - Appearance
 - Functionality

Problem Definition

- Goal: Build a toy truck
 - Simplified 3D CAD model of a truck, where each component is a primitive shape with affordance labels
- System:
 - For each component in the goal product, find candidate that matches the required **affordances**, **shape** and has the most similar **size**







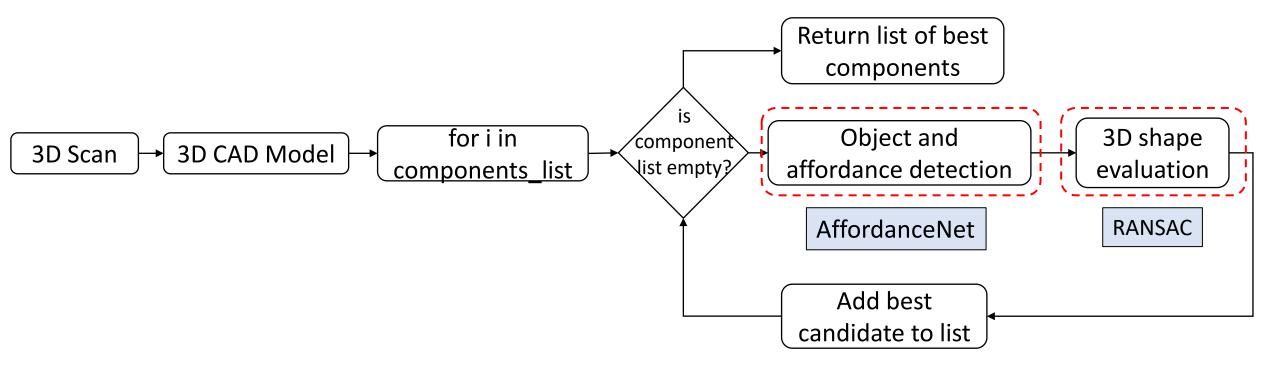
Cuboids	Length x Width x Height (mm)	Affordance label
Cabin	180 x 180 x 230	contain; support
Chassis	500 x 110 x 30	support
Cylinders	Diameter x Height (mm)	Affordance label
Axle	20 x 180	rollable

100 x 35

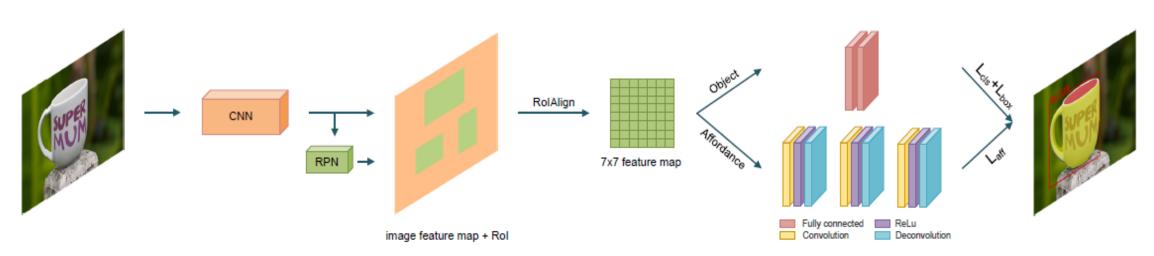
Wheel

rollable

Method



AffordanceNet



Do, Thanh-Toan, Anh Nguyen, and Ian Reid. "Affordancenet: An end-to-end deep learning approach for object affordance detection." (2018)

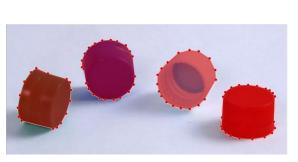
• Framework of CNNs

- One branch for Object detection
- One branch for Affordance detection

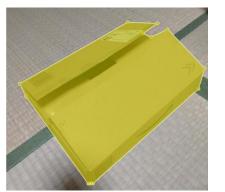
Database

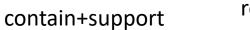
- 5 Object classes and 3 affordance classes
- 1190 images of mostly isolated objects
 - Augmented 4 times total of 5950 images
- 80% for training, 20% for testing.
- Training for 170k iterations.

Object Class	Affordance label			
PET bottle	Contain + rollable			
Bottle cap	Contain + rollable			
Cardboard box	Contain + support			
Сир	Contain + rollable			
Marker	Rollable			



contain+rollable





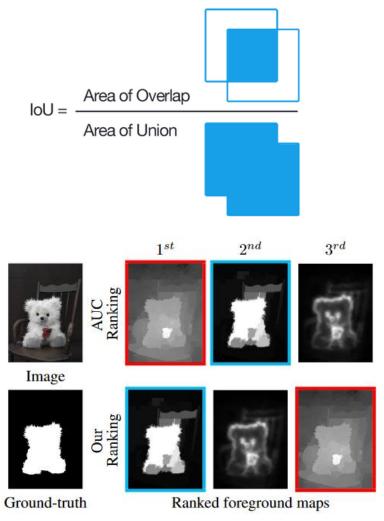
rollable

Evaluation

- Object detection:
 - Mean Average Precision (mAP)
 - IoU @0.5
- Affordance detection:
 - F_{β}^{ω}

$$\begin{aligned} Precision^{\omega} &= \frac{TP^{\omega}}{TP^{\omega} + FP^{\omega}} & Recall^{\omega} &= \frac{TP^{\omega}}{TP^{\omega} + FN^{\omega}} \end{aligned}$$

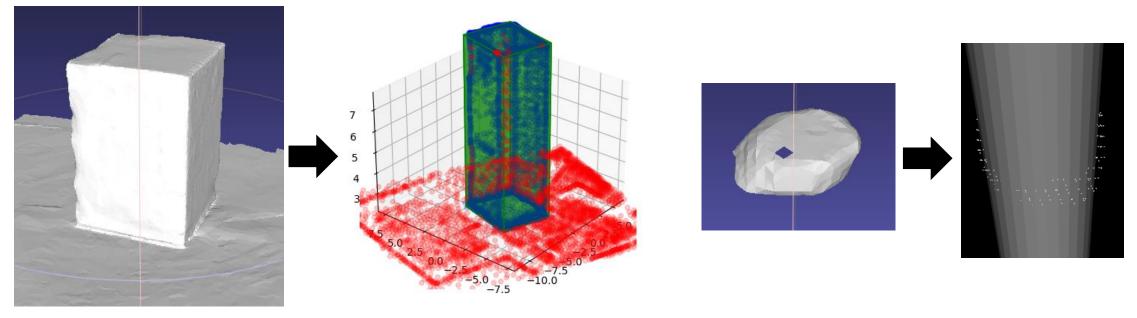
$$F^{\omega}_{\beta} &= (1 + \beta^2) \, \frac{Precision^{\omega} \cdot Recall^{\omega}}{Precision^{\omega} + Recall^{\omega}} \end{aligned}$$



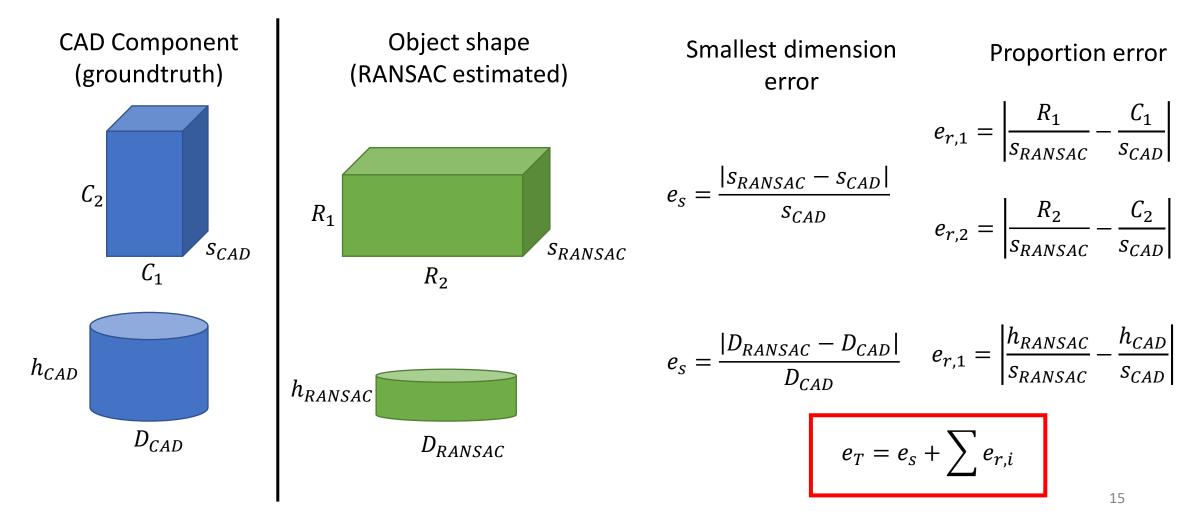
R. Margolin, L. Zelnik-Manor, and A. Tal, "How to evaluate foreground maps?". (2014)

3D Primitive shape estimation

- SCHNABEL, R., WAHL, R., KLEIN, R. "Efficient RANSAC for Point-Cloud Shape Detection". Computer Graphics Forum, Vol. 26, p. 214-226. 2007.
 - Improved computational time



Dimension evaluation



Results

AffordanceNet

Object Class	Average Precision
PET bottle	0.9377
bottle cap	0.7966
cardboard box	0.9406
cup	0.9726
marker	0.8357
mAP	0.8967

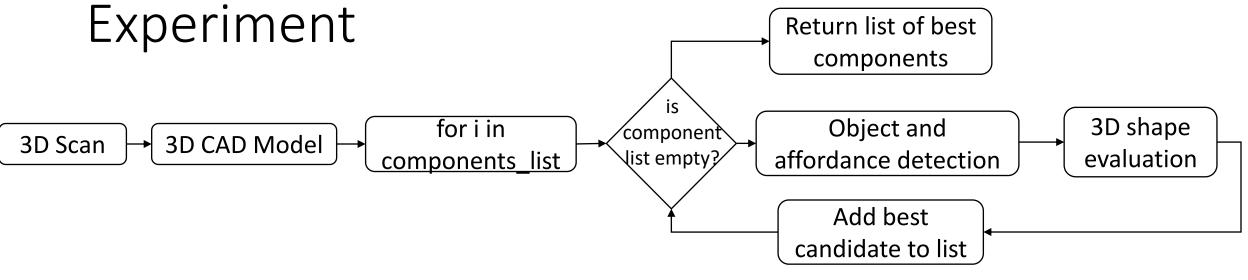
3D shape estimation

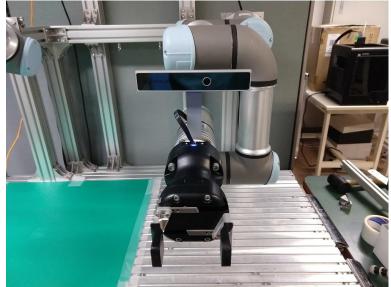
• Cylinder

	Measured (cm)		Estimated (R	ANSAC) (cm)	Absolute I	Score	
	Radius	Height	Radius	Height	Radius	Height	
PET bottle	4.5	23	4.7	23.8	+0.2	+0.8	0.068
Bottle cap	3	3	3.6	2.9	+0.6	-0.1	0.516
Marker	0.8	14	1.2	13.2	+0.4	-0.8	3.75

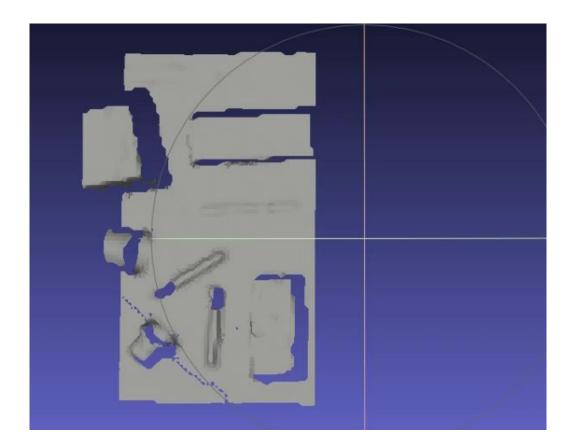
• Cuboid

	Measured (cm)		Estimated (RANSAC) (cm)			Absolute Difference			Score	
	Length	Width	Height	Length	Width	Height	Length	Width	Height	
Cardboard #1	31	8	4	24.4	7.0	3.4	-6.6	-1.0	-0.6	0.782
Cardboard #2	22	22	16	18.2	17.3	12.1	-3.8	-4.7	-3.9	0.428

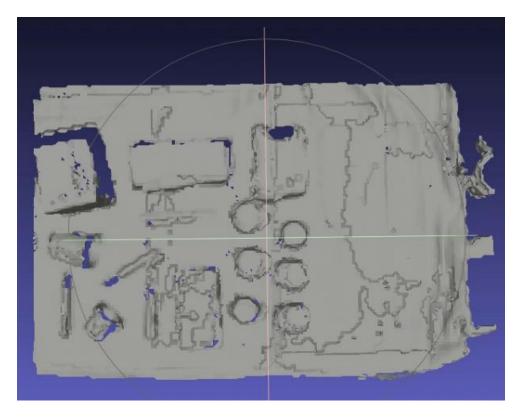




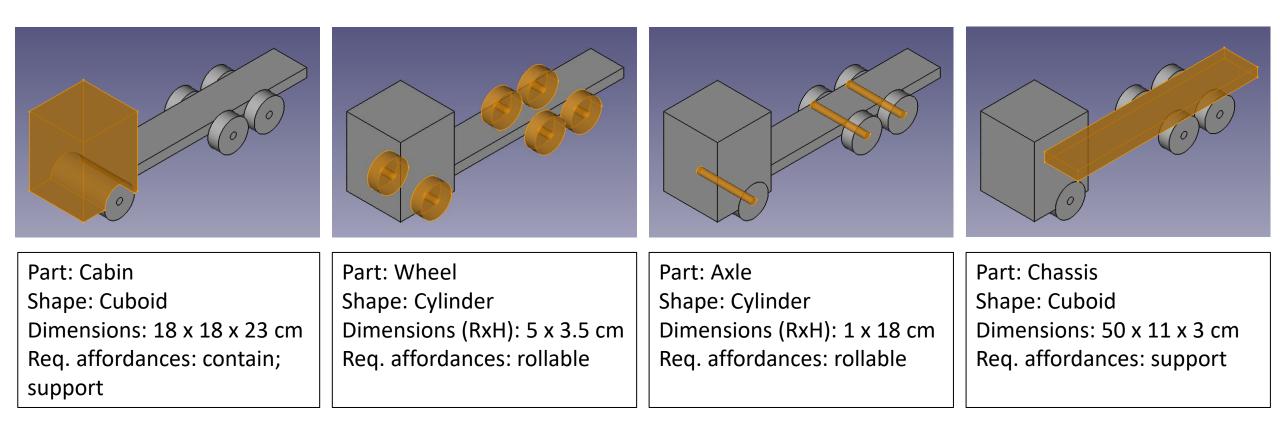
3D Scan

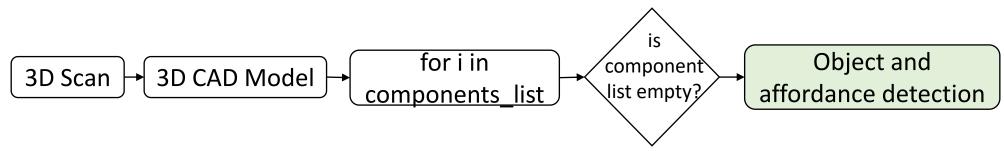


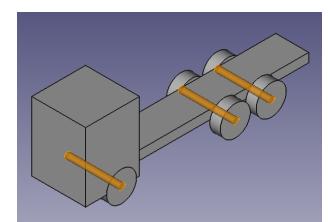
3D Scan



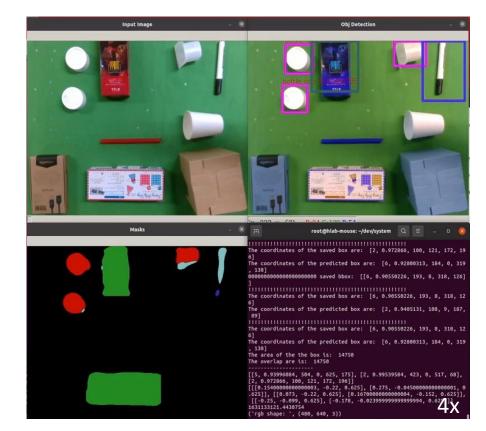
3D Scan → 3D CAD Model

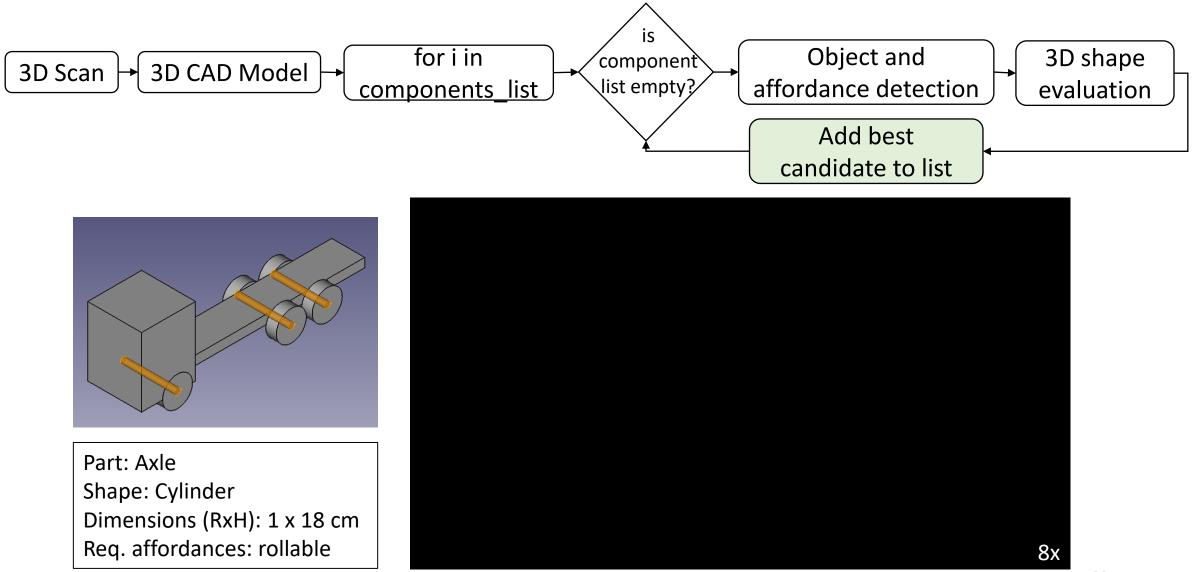


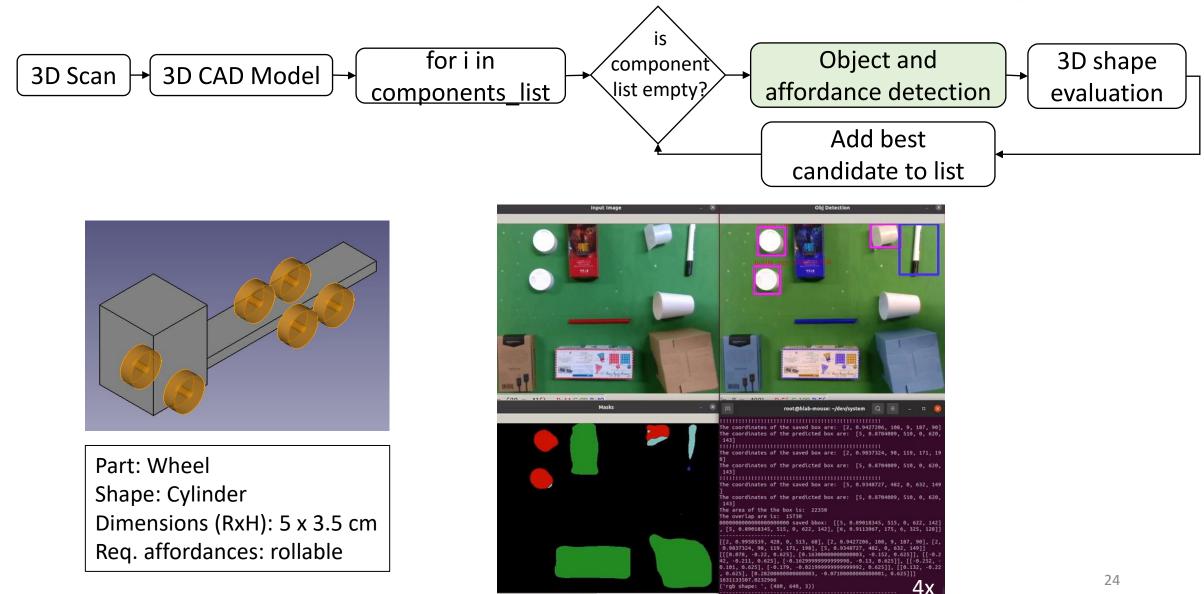


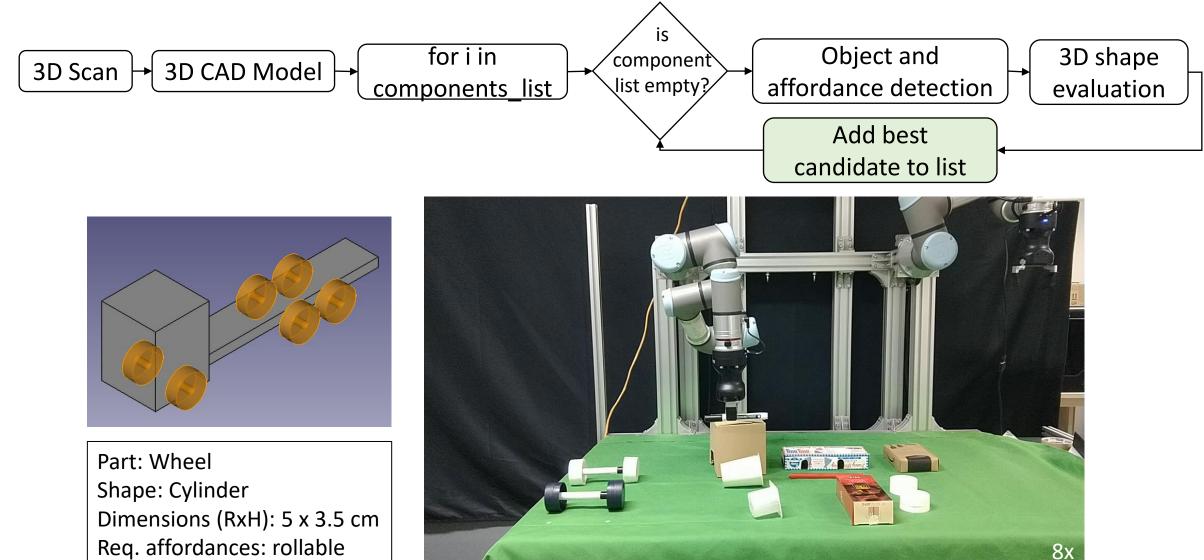


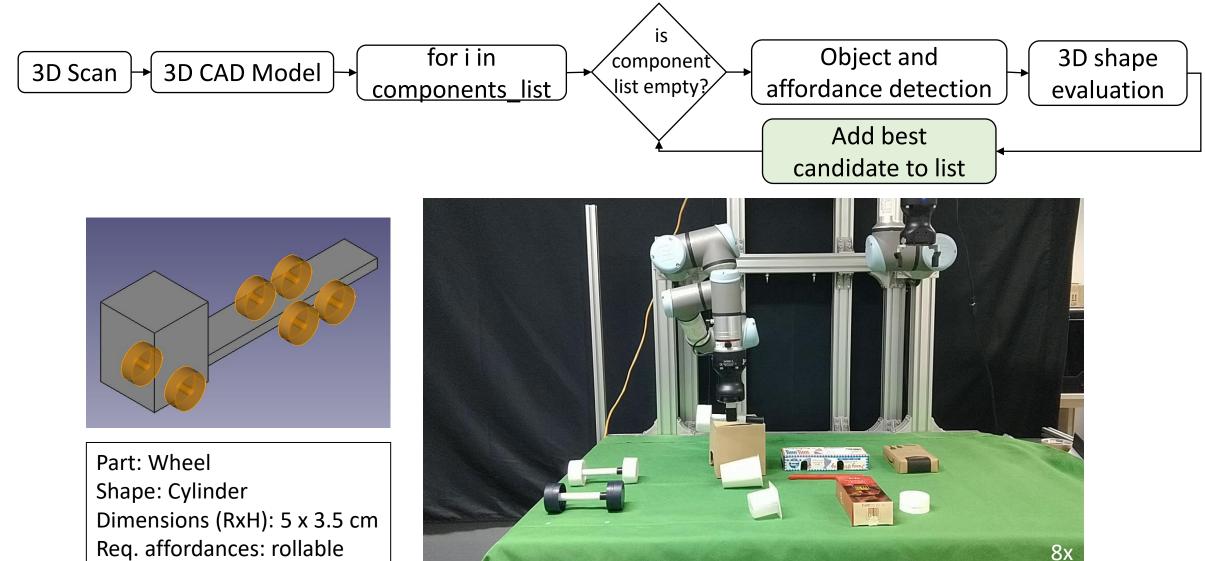
Part: Axle Shape: Cylinder Dimensions (RxH): 1 x 18 cm Req. affordances: rollable

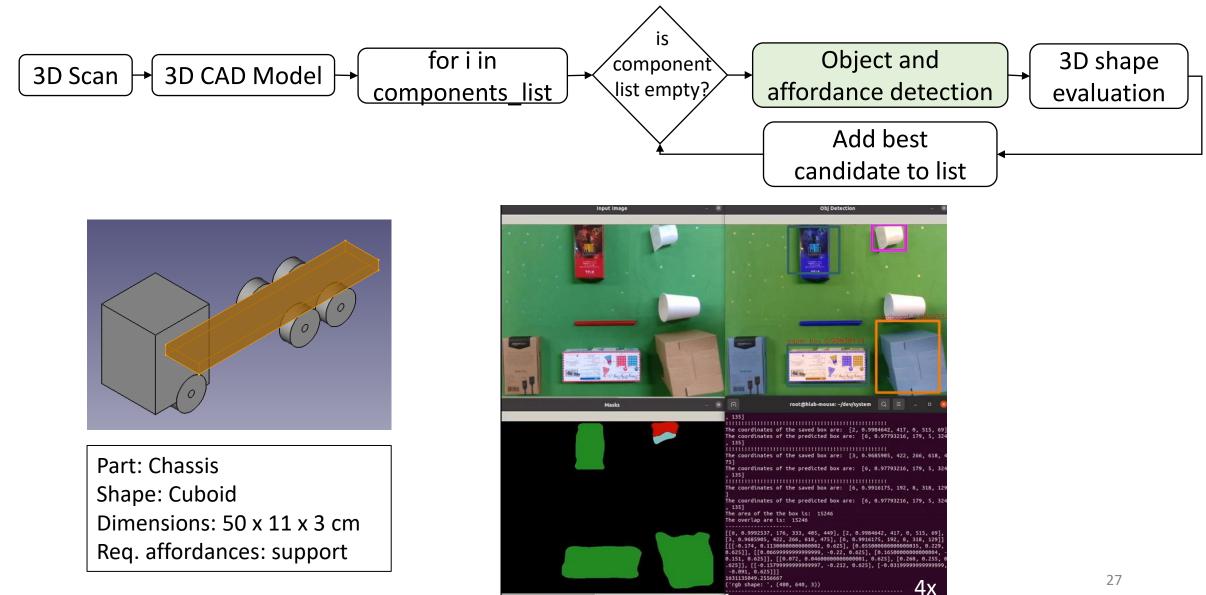


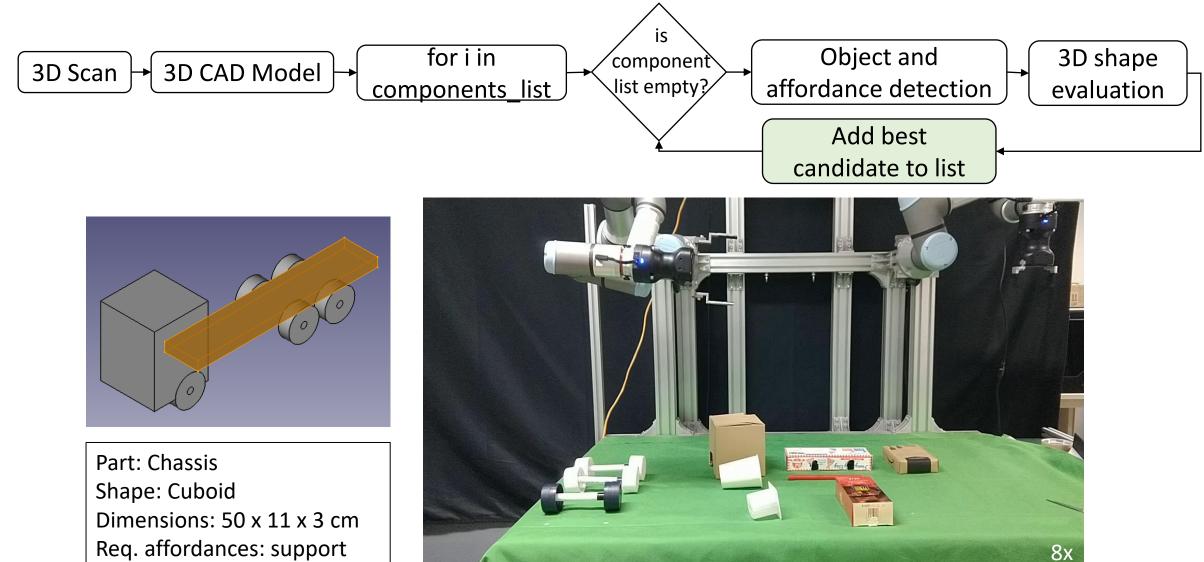


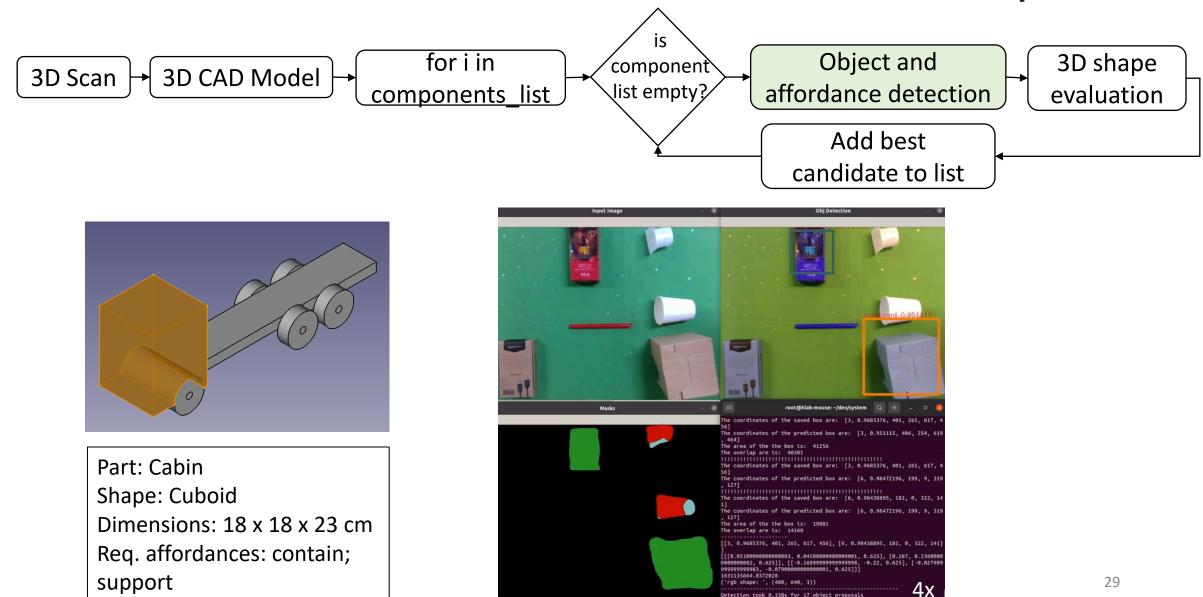




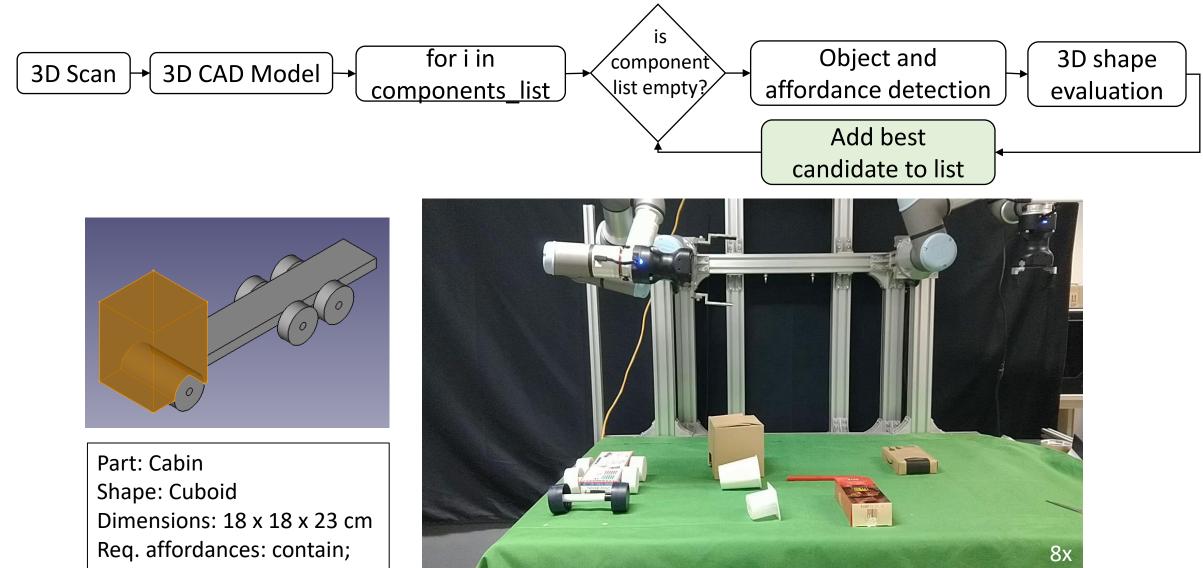


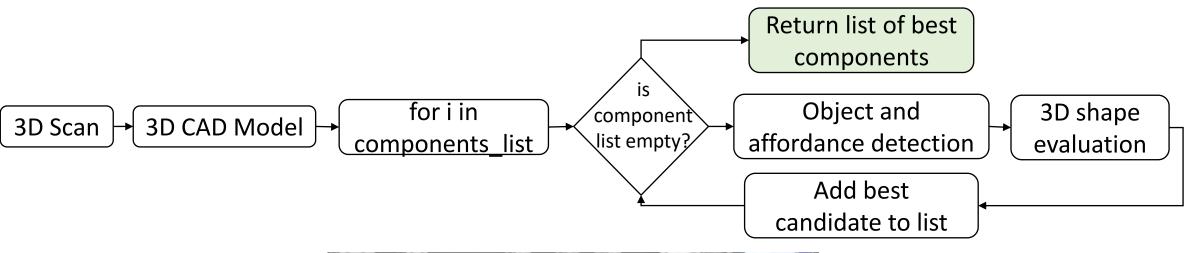






support





Conclusions

- We introduced the Craft Assembly Task and proposed a system to solve the first step: selecting the materials for the craft
- A database with affordance masks for common, everyday materials was built
- RANSAC shows some errors in dimension estimation, which might be propagated in future steps
- Future Work
- Add remaining steps of the Craft Assembly Task
- Perform the experiment for building the entire toy truck

Thank you for listening!